Archive for economic health

Why Milk Costs More but Dairy Farmers Earn Less: The Global Dairy Dilemma

Find out why milk prices are going up while dairy farmers make less money. How does this global dairy problem affect what you pay for groceries and the future of farming?

As you navigate the aisles of your local supermarket, you may have noticed a steady increase in milk prices. However, what may not be immediately apparent is the global crisis that underpins this trend: consumers are paying more, yet dairy farmers are earning less. This is not a localized issue, but a global paradox that spans continents, from Australia to Europe and North America. The economic pressures reshaping the dairy industry have far-reaching implications, impacting local economies and global trade policies.

A Global Dairy Paradox: Rising Consumer Prices, Falling Farmer Incomes 

CountryConsumer Price Increase (%)Farmer Income Reduction (%)Milk Production Change (%)
Australia10-1610-16-29
United States128-5
New Zealand1510-2
United Kingdom145-4
Canada97-3

Current market dynamics have revealed a paradox: consumers globally face higher milk prices, yet the dairy farmers producing these essential goods earn less. This is not a localized issue, but a global crisis. For instance, milk prices have surged by 10-16%, costing a two-liter carton over $3.10. Simultaneously, farmers are struck as milk companies cut their payments and anticipate significant annual earnings decreases. This financial strain jeopardizes their farm operations and workforce. This dilemma extends worldwide, affecting farmers from New Zealand to France. Higher operational costs and market volatility place immense pressure on dairy producers, creating an emotional toll that leaves many questioning their future in the industry.

The Financial and Emotional Toll on Dairy Farmers Worldwide 

The financial and emotional toll on dairy farmers worldwide is palpable and heart-wrenching. Many are caught in a relentless battle to break even, much less invest in future improvements, yet despite their unyielding spirit, they remain on the precipice of financial ruin. Jason Smith, a dairy farmer from Irrewillipe, plunged into personal despair, confessed, “The milk company has cut prices so drastically that I will lose $217,000 from my milk cheque next year.” The weight of such a monumental loss bears down heavily, inevitably leading to the heartbreaking decision to let go of valued workers. “Some of these workers will likely be moved on,” Smith added, with a tone laden with regret, highlighting the severe impact on his 400-cow dairy farm.  

Mark Billing, Dairy Farmers Victoria’s leader, foresees further painful declines in milk production. “Milk production has been in a downward spiral for more than 20 years,” he remarked, underscoring the long-standing struggles that seem to offer no reprieve. Echoing this sentiment, Craig Emmett, a fourth-generation dairy farmer, echoed the desolation felt by many, “We’re starting to miss out a bit.”  

These financial hardships ripple through entire rural communities, straining the very fabric that holds them together. Families agonize as they strive to maintain essential services and sustain local businesses amidst mounting economic pressures. Global dairy companies are slashing prices due to market volatility, further exacerbating regional economic instability. “This will hurt regional employment and financial confidence in towns,” Billing stated solemnly, his voice tinged with forewarning and sorrow.  

In essence, while farmers grapple with intense financial pressures, the repercussions reverberate through the broader economic and social fabrics, leaving entire communities vulnerable and clinging to hope amidst uncertainty.

A Declining Trend in Global Milk Production and Its Consequences 

Country2018 (Billion Liters)2019 (Billion Liters)2020 (Billion Liters)2021 (Billion Liters)2022 (Billion Liters)
United States98.699.3100.1101.2101.7
European Union158.6161.2163.0162.5160.8
New Zealand21.321.922.422.121.7
Australia8.88.58.38.17.8
India186.0192.0198.0204.0210.0

The global decline in milk production has significant implications, driven by economic challenges, climate change, and shifting consumer preferences

In Europe, stricter environmental regulations and sustainable practices are reducing yields. Some countries are cutting dairy herd sizes to lower greenhouse emissions, directly impacting the milk supply. 

North America is also facing a downturn. Despite technological advances, rising operational costs and volatile milk prices are forcing many small and midsize farms to close. 

In Asia, particularly in India and China, changing dietary patterns and urbanization are straining local production, forcing these regions to rely on imports to meet demand. 

Sub-Saharan Africa has limited access to quality feed and veterinary services, along with inconsistent rainfall and prolonged droughts, all of which affect dairy herd productivity. 

This global decline creates supply shortages, increasing prices and making dairy products less affordable. This can depress demand, creating a vicious cycle. The economic viability of rural communities and small farmers is threatened, impacting local economies. 

Reliance on imported dairy products raises quality, freshness, and geopolitical stability issues, leading to a vulnerable and destabilized market. 

The dairy industry must adapt to address these challenges, focusing on innovative farming practices, supportive policies, and international cooperation to ensure sustainability and resilience.

Escalating Production Costs: The Multifaceted Challenges Facing Dairy Farmers Worldwide

RegionCost of Production (USD per liter)Trend (2019-2023)
North America$0.40 – $0.60Increasing
Europe$0.35 – $0.55Stable
Australia$0.45 – $0.65Increasing
New Zealand$0.30 – $0.50Increasing
South America$0.25 – $0.45Stable
Asia$0.20 – $0.40Increasing

Dairy farmers worldwide are grappling with soaring production costsRising feed prices, driven by global commodity markets and poor weather, are a significant challenge. Farmers across continents are witnessing unprecedented spikes in the cost of livestock feed, particularly due to the ongoing disruptions in global supply chains and adverse climatic conditions that have diminished crop yields.  

Additionally, increased energy costs impact transportation and farm operations. As the price of fuel rises, the cost to transport dairy products from farms to processors and ultimately to retail markets becomes more burdensome. This escalation in energy costs is a worldwide phenomenon, affecting farmers everywhere from the United States to Germany and India. Furthermore, higher labor costs make retaining skilled workers challenging. 

Regulatory changes and environmental compliance add financial strain, requiring investment in technologies to reduce the carbon footprint and manage waste sustainably. Government regulations in various countries mandate stringent environmental controls. For instance, in the European Union, the Green Deal aims to reduce greenhouse gas emissions, compelling farmers to adopt more sustainable practices, often at significant cost.  

Inflation further compounds these issues, increasing prices for essential goods and services. Inflation rates have surged globally, exacerbating the financial strain on dairy farmers who already contend with low milk prices and market volatility. In nations like Brazil and South Africa, inflation has reached double digits, putting additional pressure on farmers to cover rising operational costs.  

These factors collectively elevate operational costs, burdening farmers facing low milk prices and volatile markets. The intersection of these challenges creates a precarious situation, pushing more dairy farmers out of business and threatening the stability of the global dairy industry. As farmers struggle to stay afloat, the ripple effects extend beyond the farm, impacting global food security and economic stability in rural communities worldwide.

The Far-Reaching Impact of the Global Dairy Crisis on Rural Communities 

As the global dairy crisis deepens, its effects ripple through rural communities worldwide. Declining dairy farmingimpacts local employment, education, and the economic health of these regions. Dairy farms are community linchpins, providing jobs and supporting local businesses. When these farms falter or close, the community’s economic core weakens. 

Employment is hit hard. Dairy farms employ numerous workers for livestock management and daily operations. As farmers’ incomes shrink, they reduce their workforce or cease operations, leading to higher unemployment and broader economic distress. 

Local schools suffer as well. Many rural schools rely on farm families to maintain enrollment. A decline in dairy farming means fewer families, reducing student populations and potentially leading to school closures. 

Local businesses also feel the strain. Dairy farms support businesses like feed suppliers, veterinary services, and local shops. Financially strained farmers cut spending, causing downturns for these businesses and pushing rural communities toward economic desolation. 

The social fabric of rural areas is at risk. Many dairy farms are family-run, and their decline disrupts generational ties and community spirit. This fosters a collective sense of loss and hopelessness, affecting community cohesion and mental health. 

The dairy sector crisis is a call to action, highlighting the need for comprehensive support and sustainable policies. Ensuring the viability of dairy farming is crucial for the socioeconomic well-being of rural communities worldwide. It’s time to act, stand with our farmers, and secure a sustainable future for the dairy industry.

The Cost Conundrum: Rising Dairy Prices, Falling Farmer Earnings – An Overlooked Global Crisis 

The disconnect between supermarket prices and farmer earnings is a perplexing issue that many consumers fail to notice. While dairy product prices climb, farmers see their incomes drop. This paradox worsens during inflation, leading shoppers to focus on saving money rather than questioning price origins. 

During tough economic times, consumers often choose cheaper, imported dairy alternatives without realizing they are deepening the crisis. Ironically, they financially strain the farmers supplying their milk while trying to save, destabilizing rural economies. 

Lack of awareness fuels this issue. Most consumers do not grasp the complexities of milk pricing, where retail prices do not reflect fair compensation for farmers. Intermediaries in the supply chain take their cut, leaving farmers with little from the final sale. 

Solving this requires consumer awareness, policy changes, and fair trade practices. Without these efforts, consumers and farmers will continue to struggle, and the impacts on food security  and rural communities will worsen.

The Bottom Line

The gap between rising consumer prices and falling farmer incomes is a pressing issue impacting dairy farmers and rural communities everywhere. Farmers face financial and emotional strain, leading to downsizing and halted upgrades. This imbalance drives down global milk production and exacerbates the crisis. While imported dairy may seem cheaper, it often comes with quality concerns. 

Addressing this global dairy problem requires a comprehensive approach. Governments could provide subsidies, reduce market intervention, and promote fair trade to help balance the scales. Enhancing global cooperation to stabilize milk prices and ensure fair compensation for farmers is crucial. Investing in innovative farming techniques and environmental sustainability can offer long-term solutions, guaranteeing that the dairy industry meets growing demands while protecting the environment. 

Now is the time for coordinated global efforts to create a fairer dairy supply chain, benefiting both consumers and producers. By adopting a balanced approach, we can sustain this vital industry for future generations.

Key Takeaways:

  • Global dairy farmers are receiving reduced payments despite rising consumer prices for milk and other dairy products, leading to significant financial strain.
  • The reduction in farmer earnings affects the entire dairy supply chain, influencing farm operations, workforce stability, and local economies.
  • A persistent decline in global milk production is exacerbated by a combination of economic challenges, climate change, and shifting consumer preferences.
  • Dairy importation is on the rise as local production falters, further complicating the market dynamics and contributing to regional disparities.
  • Rural communities, particularly those heavily dependent on dairy farming, are experiencing adverse effects including reduced employment opportunities and weakened financial confidence.
  • Long-term sustainability in the dairy sector requires addressing root causes, enhancing consumer understanding, and implementing supportive policy measures and innovative farming techniques.

Summary: Milk prices have surged by 10-16% globally, causing a global crisis affecting dairy production across continents. Farmers are facing financial strain due to reduced payments and anticipated earnings decreases from milk companies. This strain affects farm operations and workforce, affecting farmers from New Zealand to France. The decline in milk production is attributed to economic challenges, climate change, and shifting consumer preferences. In Europe, stricter environmental regulations reduce yields, while North America faces a downturn due to rising operational costs and volatile milk prices. In Asia, changing dietary patterns and urbanization strain local production, forcing them to rely on imports. Sub-Saharan Africa faces limited access to quality feed and veterinary services, and inconsistent rainfall and prolonged droughts affect dairy herd productivity. This global decline creates supply shortages, increasing prices, and making dairy products less affordable, depressing demand and creating a vicious cycle. Dairy farmers worldwide face soaring production costs, including rising feed prices, energy costs, labor costs, regulatory changes, and inflation. Addressing the global dairy crisis requires consumer awareness, policy changes, and fair trade practices. Investing in innovative farming techniques and environmental sustainability can offer long-term solutions to meet growing demands while protecting the environment.

Decoding the Impact of Housing Systems on Digital Dermatitis in Dairy Cows: A Genetic Study

Delve into the influence of housing systems on digital dermatitis in dairy cows. Could genetic evaluations pave the way for enhanced bovine health across varied living conditions? Uncover the research insights here.

Imagine walking barefoot on gravel daily; the discomfort of digital dermatitis (DD) in dairy cows feels similar. This painful hoof disease significantly hampers cows’ mobility, milk production, and the economic health of dairy farms. 

The environment in which cows are housed plays a critical role in DD’s incidence and severity. Housing systems such as conventional cubicle barns (CON) and compost-bedded pack barns (CBPB) have distinct impacts on disease management. Understanding these housing-related nuances is vital for farmers and researchers working to reduce DD’s impact. 

This research utilizes detailed phenotyping data from over 2,980 observations of Holstein-Friesian and Fleckvieh-Simmental cows on ten farms. It investigates the genetic variances linked to DD stages: sick, acute, and chronic. Through genome-wide association studies (GWAS), the study identifies potential candidate genes and assesses genotype × housing system interactions. This comprehensive analysis seeks to uncover genetic factors that can inform breeding programs and enhance animal welfare, regardless of their rearing environment. 

Introduction: Understanding Digital Dermatitis in Dairy Cows

Digital Dermatitis (DD) is an infectious disease impacting the bovine foot, particularly the plantar skin bordering the interdigital cleft. This condition ranges from initial lesions to chronic, painful wounds, affecting dairy cows‘ mobility and well-being. 

The development of DD involves a mix of environmental, genetic, and management factors. Housing systems, especially conventional cubicle barns, create conditions ripe for DD, with moisture and contamination fostering pathogen growth. Nutritional imbalances, poor foot hygiene, and milking routines further increase risk. Notably, genetic predispositions also play a role; some cattle lines are more susceptible, emphasizing the need for genetic research to combat DD. 

The economic and welfare impacts of DD are significant. Economically, it causes losses through reduced milk production, higher veterinary costs, and culling of severely affected cows. Welfare-wise, the pain and lameness from DD seriously affect cattle comfort and health, raising ethical concerns in livestock management. Therefore, addressing DD with better housing, management practices, and genetic selection is crucial for sustainable dairy farming.

Exploring Housing Systems: Cubicle Barns vs. Compost-Bedded Pack Barns

Housing systems play a pivotal role in dairy productivity and cow health and welfare. The primary systems include conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), each impacting the Prevalence and severity of digital dermatitis (DD). 

In CON setups, cows rest on mats or mattresses over concrete floors. This controlled environment supports restful ruminating but can worsen claw disorders due to constant exposure to manure and poor ventilation. Conversely, CBPB systems offer cows a spacious environment with composting bedding of sawdust or wood shavings, which is more comfortable and supports better hoof health by reducing pathogens through microbial activity. 

The flooring material is crucial. Concrete floors in CON systems retain moisture and manure, fostering bacteria that cause DD. CBPB systems’ drier, more sanitary bedding leads to fewer DD incidences. 

Hygiene practices, essential for DD control, differ by system. CON systems require regular scraping and washing, while CBPB systems depend on managing bedding moisture and microbial activity. Both approaches aim to reduce bacterial loads and curb DD spread. 

Cow comfort, dictated by the housing system, also affects DD prevalence. CBPB’s spacious, free-roaming environment reduces stress and improves immune function, making cows less prone to DD. In contrast, CON systems’ restrictiveness can increase anxiety and susceptibility to claw disorders. 

In summary, the choice between cubicle barns and compost-bedded pack barns significantly impacts cow health and the incidence of DD. Prioritizing comfort and hygiene in housing systems leads to healthier, more productive cows with fewer claw disorders.

Unveiling Genetic Interactions Between Housing Systems and Digital Dermatitis in Dairy Cows

ParameterConventional Cubicle Barns (CON)Compost-Bedded Pack Barns (CBPB)Overall Dataset
Number of Observations1,4501,5302,980
Number of Cows8118991,710
DD-Sick Prevalence (%)HigherLower20.47%
DD-Acute Prevalence (%)HigherLower13.88%
DD-Chronic Prevalence (%)HigherLower5.34%
Heritability – DD-Sick0.160.160.16
Heritability – DD-Acute0.140.140.14
Heritability – DD-Chronic0.110.110.11
Genetic Correlation (CON and CBPB) – Same Traits~0.80N/A
Genetic Correlation – Within Traits (DD-Sick, DD-Acute, DD-Chronic)0.58 – 0.81
Significant Candidate Genes for DD-Sick and DD-Acute (SNP Main Effects)METTL25, AFF3, PRKG1, TENM4
Significant Candidate Genes (SNP × Housing System Interaction)ASXL1, NOL4L (BTA 13)

The genetic study on digital dermatitis (DD) in dairy cows examined the influence of different housing systems on the disease. This research aimed to understand the interaction between cow genotypes and their environments. It focused on DD stages—DD-sick, DD-acute, and DD-chronic—in conventional cubicle barns (CON) and compost-bedded pack barns (CBPB). Herds were selected to ensure similarities in climate, feeding, and milking systems. Still, they differed in housing setups to isolate housing-specific impacts on DD. 

Using 2,980 observations from 1,710 cows and 38,495 SNPs from 926 genotyped cows after quality control, the study employed single-step approaches for single-trait repeatability animal models and bivariate models to estimate genetic parameters and correlations. GWAS identified specific SNPs and their interactions with housing systems. Heritabilities for DD stages and genetic correlations between the same traits in different housing systems were also calculated. 

Results showed higher DD prevalence in CON systems compared to CBPB. Heritabilities were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic, with a slight increase in CON. Genetic correlations between the same DD traits in different housing systems were around 0.80, indicating minimal genotype × housing system interactions. Correlations among DD stages ranged from 0.58 to 0.81, showing their interconnectedness regardless of the housing system. 

GWAS results were varied for DD-acute and DD-chronic, indicating complex pathogenesis. Candidate genes affecting disease resistance or immune response included METTL25, AFF3, PRKG1, and TENM4 for DD-sick and DD-acute. SNP × housing system interactions highlighted ASXL1 and NOL4L on BTA 13 for DD-sick and DD-acute. 

For dairy farmers, these findings underline the impact of housing systems on the Prevalence and progression of DD and the potential genetic implications. Our comprehensive study provides actionable insights for dairy farmers globally. 

Notably, DD prevalence was significantly higher in CON, highlighting the challenging environment of cubicle barns compared to the more welfare-oriented CBPB system. These insights are crucial as they affect animal health and have economic ramifications, including reduced milk production and increased treatment costs. 

We examined genetic evaluations across these environments and found that heritabilities for DD traits (DD-sick, DD-acute, DD-chronic) were slightly higher in the CON system. Still, overall genetic parameters remained consistent across both systems. Despite different housing practices, the genetic predisposition to DD remains relatively stable. 

Genetic correlations between different DD stages (ranging from 0.58 to 0.81) suggest a common underlying genetic resistance mechanism crucial for developing targeted breeding programs. Furthermore, GWAS pinpointed several candidate genes, such as METTL25, AFF3, PRKG1, and TENM4, with significant implications for disease resistance and immunology. 

This research underscores the importance of genotype-environment interactions, even though these were minimal in housing systems. Integrating genomic insights with practical management strategies can improve animal well-being and farm productivity as the dairy industry evolves. 

By applying these findings, dairy farmers can make informed decisions about housing systems and genetic selection, enhancing economic and animal health outcomes. This study calls for the industry to adopt evidence-based practices rooted in rigorous scientific research.

Genetic Evaluations: From Genotypes to Phenotypes

The research meticulously analyzed data from 1,311 Holstein-Friesian and 399 Fleckvieh-Simmental cows, totaling 2,980 observations across three digital dermatitis (DD) stages: DD-sick, DD-acute, and DD-chronic. This granular phenotyping clarifies how DD stages manifest in different environments. By categorizing it into conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), the study highlights the environmental impact on genetic expressions related to DD. 

Quality control of 50K SNP genotypes refined the data to 38,495 SNPs from 926 cows. This dataset formed the basis for estimating genetic parameters through single-step approaches. The genetic correlations between DD traits and housing systems uncovered genotype × environment (G×E) interactions. 

Heritability estimates were 0.16 for DD-sick, 0.14 for DD-acute, and 0.11 for DD-chronic, indicating the genetic influence. Notably, these estimates and genetic variances slightly rose in the more stressful CON environment, indicating heightened genetic differentiation under challenging conditions. Genetic correlations between the same DD traits across different housing systems were around 0.80, showing minimal G×E interactions. 

Genome-wide association studies (GWAS) revealed heterogeneous Manhattan plots for DD-acute and DD-chronic traits, indicating complex biological pathways. Despite this, several shared candidate genes like METTL25, AFF3, PRKG1, and TENM4 were identified, showing their potential role in managing DD through genetic selection. 

For SNP × housing system interactions, genes such as ASXL1 and NOL4L on chromosome 13 were relevant for DD-sick and DD-acute. These findings illustrate how specific genetic markers interact with environmental factors. Overall, the minimal impact of genotype × housing system interactions supports robust genetic evaluations for DD across diverse environments, aiding broader genetic selection strategies in dairy cow populations. 

The Bottom Line

This study highlights the importance of detailed phenotyping and genetic evaluations in understanding digital dermatitis (DD) in dairy cows. By examining 1,710 Holstein-Friesian and Fleckvieh-Simmental cows in conventional cubicle barns (CON) and compost-bedded pack barns (CBPB), the research provided crucial insights into the Prevalence and heritability of DD. It found slightly higher genetic differentiation in the more challenging CON environment but minimal genotype × housing system interactions, indicating a limited impact on genetic assessments. Essential genes like METTL25, AFF3, PRKG1, and TENM4 were identified as necessary for disease resistance and immunology. 

Understanding how housing systems affect DD is crucial. It helps improve management practices to reduce DD prevalence, enhancing cow welfare and farm productivity. It also improves genetic selection by identifying traits that enhance DD resistance in specific environments, benefiting long-term herd health and sustainability. This insight is vital for today’s dairy operations and future breeding programs. 

Future research should delve into the long-term impact of housing systems on genetic traits linked to DD resistance. Exploring other environmental and management factors, like nutrition and milking routines, would offer a fuller understanding of DD. Personalized genetic interventions tailored to specific farm environments could be a game-changer in managing this disease in dairy cows.

Key Takeaways:

  • The study analyzed 2,980 observations of DD stages, differentiating between DD-sick, DD-acute, and DD-chronic across two housing systems: conventional cubicle barns (CON) and compost-bedded pack barns (CBPB).
  • Heritabilities for DD were slightly higher in the CON environment, suggesting a stronger genetic differentiation of the disease in more challenging conditions.
  • Despite varying heritabilities, genetic correlations between the same DD traits in different housing systems were high, indicating minimal genotype × housing system interactions.
  • GWAS highlighted significant candidate genes such as METTL25, AFF3, and PRKG1, which play roles in disease resistance and immunology.
  • This research underscores the importance of considering housing systems in genetic evaluations to enhance disease management and improve cow welfare.


Summary: Digital Dermatitis (DD) is a severe hoof disease that affects dairy cows’ mobility, milk production, and farm economic health. Housing systems like conventional cubicle barns (CON) and compost-bedded pack barns (CBPB) have distinct impacts on disease management. CON setups, which support restful ruminating but can worsen claw disorders due to constant exposure to manure and poor ventilation, have higher DD-sick prevalence than CBPB systems (5.34%). Both approaches aim to reduce bacterial loads and curb DD spread. CBPB’s spacious, free-roaming environment reduces stress and improves immune function, making cows less prone to DD. A study found higher DD prevalence in CON systems compared to CBPB. Understanding how housing systems affect DD is crucial for improving management practices, enhancing cow welfare, and improving genetic selection.

Send this to a friend