Archive for COLOSTRUM

Unlocking the Secrets of Calf and Heifer Nutrition: From Conception to Puberty for Optimal Dairy Production

Unlock the secrets of calf and heifer nutrition from conception to puberty. How can optimal feeding strategies boost dairy production and animal health? Discover more.

Calf and heifer nutrition is essential to dairy production, although it is sometimes disregarded. The developmental phases from conception to puberty are crucial for young cattle’s health and growth as well as long-term production and efficiency in dairy operations. Surprisingly, calves have the greatest rates of sickness and death among all animals on dairy farms. This troubling trend emphasizes the critical need for sophisticated nutritional solutions that might prevent these hazards and, eventually, boost dairy profitability.

Calves, unfortunately, bear the brunt of the highest morbidity and mortality rates on dairy farms. This stark reality underscores the pressing need for enhanced nutritional strategies.

The journey from conception to the early stages of life provides multiple chances to refine feeding practices. Progressive research emphasizes maternal nutrition’s significant influence on fetal growth, immunoglobulin-rich feeds shortly after delivery, and the deliberate shift from milk-based to solid meals. As we go through these critical stages, it becomes clear that a collaborative effort to address these nutritional deficiencies is vital for improving animal welfare, development, and the overall sustainability of the dairy sector.

AspectStatisticImplication
Calf Mortality Rate7.8% in the first 60 daysSignificant loss of potential; highlights need for better neonatal care
Colostrum QualityOnly 60% achieve adequate IgG levelsInsufficient immunity transfer; requires improved colostrum management
Milk Replacer Usage80% of dairy calves globallyNecessitates evaluation of nutritional adequacy compared to whole milk
Weaning AgeVaries between 6-8 weeksImpacts digestive development and future health; optimal timing crucial
Post-Weaning Growth Rate1.8-2.2 lbs/dayDirectly influences future milk production; emphasizes need for balanced nutrition

Maternal Nutrition: The Foundation of Future Dairy Success 

The role of maternal nutrition in shaping the future of dairy success cannot be overstated. The mother’s intake of sufficient energy and protein significantly influences the fetus’s developmental plasticity, a crucial phase when the growing organism’s ability to alter and adapt is at its peak.

The period from conception to the early stages of life sets the stage for the calf’s future output. The mother’s assimilation of nutrients is instrumental in promoting fetal development and establishing physiological pathways for calf growth, health, and milk supply.

Colostrum: The Lifeblood of Early Calf Development 

The calf’s first colostrum feeding is a vital foundation for building robust health and survival. Colostrum, which contains immunoglobulins, is essential for transmitting passive immunity and developing a calf’s immune system. These immunoglobulins serve as the calf’s first line of defense against infections, providing a protective barrier during the early stages of life while the immune system is still developing.

Beyond immunoglobulins, colostrum is rich in bioactive components such as proteins, lipids, and carbohydrates. These chemicals are critical in maintaining health and promoting appropriate growth and development. These bioactive components are anticipated to affect various physiological activities, supporting future dairy herd production and lifespan.

Extended colostrum or transition milk feeding, in which the calf receives these essential nutrients longer after birth, has had positive outcomes. Gradually transitioning from colostrum to regular milk enables a continuous supply of these crucial bioactive components, improving the calf’s overall health metrics and growth rates during those critical initial days and weeks. This strategy facilitates a smoother transition into the preweaning period, laying the groundwork for the calf’s growth path.

Nurturing Resilience: The Imperative of Optimal Preweaning Nutrition 

The health and development of dairy calves depend heavily on optimal nutrition throughout the pre-weaning stage. At this critical time, calves are more prone to various health issues that might impede their development and future output. Ensuring an appropriate and balanced diet helps reduce these risks and promotes healthy growth. This, in turn, has significant long-term benefits for their future milk supply, as healthier calves tend to develop into more productive cows, fostering optimism about the future of the dairy herd.

Recent research has also prompted a critical reassessment of classic milk replacer formulas. Historically, these formulations have been the standard for calf feeding, and they are being studied for their composition and effectiveness compared to whole milk. The objective is to improve the nutritional composition of these milk replacers to satisfy the demands of preweaning calves better, guaranteeing their survival and growth during this sensitive period.

Smooth Transitions: Navigating the Shift from Milk to Solid Feed for Calves

Transitioning from a milk-based diet to solid feed is an essential stage in the life of a dairy calf. The transition to a solid diet promotes the growth of the rumen, which is necessary for mature ruminant function. This process must be carefully controlled to ensure the calf adjusts without excessive stress, which might result in poor development and health difficulties. According to research, delaying weaning age and using progressive step-down techniques may help lessen these hazards, providing reassurance about the process.

Gradual step-down techniques entail slowly reducing liquid feed while gradually boosting solid feed intake. This stepwise technique helps the calf’s digestive system to acclimate to the nutritional shift, resulting in a more seamless transition to a solid diet. This method is critical in avoiding growth setbacks and health issues sometimes connected with sudden weaning procedures.

Balancing your calorie and protein consumption throughout this changeover is equally vital. The nutritional mix of liquid and solid meals must be precisely tuned to match the calf’s changing requirements. For example, keeping a more excellent protein content in liquid feed while introducing energy-dense starter feeds may help with consistent growth and rumen development. Recent research has shown that calves fed a well-balanced diet that accounts for their pre-weaning milk allowances have improved overall health and growth metrics during and after weaning.

Finally, these approaches demonstrate the complicated relationship between early nutrition and long-term dairy performance. Dairy producers may improve calf resilience by concentrating on well-timed, progressive changes and precise nutritional balance, laying the groundwork for future production and health.

Strategic Nutrition for Heifers: Navigating the Path from Weaning to Puberty

As heifers go from weaning to adolescence, their dietary regimens ensure they continue to grow and develop normally. Historically, high-forage diets have been administered early to stimulate digestive development and rumen function. However, new research suggests that this early transition to high-forage diets may reduce feed intake and overall development at a critical period when their efficiency in turning solid feed into growth is at its optimum.

During the post-weaning era, heifers undergo significant physiological changes that require well-balanced dietary support for vigorous development. This time also establishes the foundations for future milk production capability and overall herd performance. To maximize development potential, meals must be carefully designed to supply appropriate calories and protein while considering the balance of these nutrients.

The study emphasizes the significance of progressively shifting from milk-based diets to solid feed while maintaining optimal calorie and protein consumption levels to prevent growth plateaus or regressions. An emphasis on feeding a combination of high-quality forages and grain-based supplements may assist young ruminants in maintaining momentum in growth and development without overstressing their digestive systems.

Furthermore, recent research has indicated that postponing the introduction of exclusive high-forage diets and progressively introducing them with more nutrient-dense feeds might result in increased intake and growth rates. This technique takes advantage of the peak period of solid feed efficiency, enabling heifers to acquire the ideal weight and body condition required for successful reproduction and maximum milk output later in life.

Post-weaning to puberty is critical to a heifer’s growth. Implementing deliberate and balanced nutritional regimens that postpone the sudden transition to high-forage diets may improve heifer development and prepare them for future dairy production responsibilities. Continuous study and adaption of feeding techniques based on new data will be critical to improving these regimens and ensuring dairy farms’ long-term viability and profitability.

The Bottom Line

This article highlights the critical phases of calf and heifer nutritional development, from maternal nutrition during pregnancy to strategic feeding of heifers nearing puberty. It demonstrates how nutritional timing, balanced diets, and proper transitions from milk to solid feed may significantly influence calf health, development, and future production capacity. The message is clear: obtaining optimum calf and heifer nutrition promotes immediate health and growth advantages while laying the groundwork for long-term dairy business efficiency and profitability.

To fully realize these advantages, a more concentrated and systematic research approach is required. Such a strategy should focus on understanding and improving nutritional regimens at each developmental stage to guarantee that the dairy sector is economically viable and sustainable. To summarize, focused and thorough calf and heifer nutrition research is advantageous and critical to global dairy businesses’ long-term sustainability and performance.

Key Takeaways:

  • Maternal Nutrition: Adequate energy and protein intake by the mother during fetal development is essential, as it directly influences the calf’s future growth and performance.
  • First Colostrum Feeding: The initial colostrum intake is not just about immunoglobulin transfer; it includes bioactive compounds critical for early calf health and development.
  • Extended Colostrum Feeding: A gradual transition from colostrum to milk can provide extended benefits during the early days of the calf’s life.
  • Preweaning Nutrition: Optimum nutrition during the pre-weaning period is vital for improving calf health and future milk production. Recent studies suggest reevaluating traditional milk replacer formulations.
  • Transition to Solid Feed: Delaying weaning age and adopting a gradual step-down approach to milk allowances can help avoid production and health issues.
  • Post-Weaning Diets: High-forage diets immediately after weaning can depress intake and development. Strategies should focus on maximizing the efficiency of solid feed intake.

Summary:

Calf and heifer nutrition is crucial for dairy production, as it influences the health and growth of young cattle. However, calves have the highest rates of sickness and death, highlighting the need for advanced nutritional solutions to prevent these hazards and boost dairy profitability. Maternal nutrition influences fetus development, with colostrum essential for passive immunity and calf immune system development. Extended colostrum or transition milk feeding can facilitate a smoother transition into the preweaning period. Optimal preweaning nutrition is crucial for dairy calves, which are more prone to health issues. Recent research has prompted a critical reassessment of milk replacer formulas to improve nutritional composition. Strategic nutrition for heifers is essential as they transition from weaning to adolescence.

Learn more:

Boosting Colostrum Quality: Key Nutritional and Management Tips for Dairy Farmers

Learn how to improve colostrum quality in dairy cows with important nutritional and management tips. Want healthier calves? Discover the secrets to maintaining high-quality colostrum all year round.

Consider this: as a dairy producer, you play a crucial role in ensuring that a newborn calf begins life with the necessary immunity and nourishment to flourish. This is precisely what occurs when calves receive enough high-quality colostrum. Your efforts in providing this first milk, rich in antibodies and nutrients, are critical for the development and immunity of the calves in your care. However, you may need assistance assuring a consistent supply of high-quality colostrum throughout the year. Without it, calves are more prone to get ill, develop slowly, and suffer, reducing overall herd output. Understanding how a cow’s nutrition, health, and surroundings affect colostrum quality is critical for any dairy farmer concerned about their herd’s welfare and future.

The Interplay of Individual Animal Factors on Colostrum Production 

Understanding what controls colostrum production is critical for ensuring calves get the nutrition and antibodies they need for a healthy start. Individual animal characteristics such as parity, calf gender, and birth weight all substantially influence colostrum quantity and quality.

A cow’s parity strongly influences colostrum production or the number of pregnancies. Cows in their second or third party often produce higher-quality colostrum than first-calf heifers because of their better-developed mammary glands and overall health. However, older cows may have lower colostrum quality owing to metabolic load and health concerns.

The sex of the calf also influences colostrum composition. According to research, cows giving birth to male calves often generate colostrum with somewhat different features than those giving birth to female calves, most likely related to hormonal changes during pregnancy. For example, colostrum from cows with male calves may have more immunoglobulin, facilitating greater immunological transmission.

Calf birth weight is another critical consideration. Heavier calves produce more colostrum owing to greater suckling power and frequency—the increased need prompts the cow’s body to generate more nutritious colostrum. On the other hand, lighter calves may not produce as much, impairing their first immunological protection and development.

These elements interact in a complicated manner, influencing colostrum output and quality. Dairy farmers must consider these elements when developing breeding and feeding programs to improve calf health and production.

The Crucial Role of Metabolic Health in Colostrum Production 

A cow’s metabolic condition is critical to the quality and quantity of its colostrum. An ideal body condition score (BCS) of 3.0 to 3.5 is associated with higher-quality colostrum. An imbalance in BCS may alter energy balance and impair colostrum synthesis. Cows with negative energy balance during transition had lower colostrum output and quality. This might be due to a poor diet or metabolic adaption difficulties, resulting in reduced immune function.

Maintaining a positive or balanced energy level via correct diet and control promotes healthy colostrum production. Dairy producers may dramatically boost colostrum quantity and composition by ensuring cows have an adequate BCS and balanced energy status, increasing newborn calves’ immunity and health. Close monitoring and dietary interventions are critical for attaining these results.

Dairy cows need rigorous metabolic control to produce high-quality colostrum, emphasizing the necessity of specialized nutrition throughout the prenatal period.

Prepartum Nutrition: The Keystone of Quality Colostrum Production 

Prepartum nutrition is critical for colostrum production and quality. Dairy producers must grasp the need to maintain an appropriate balance of metabolizable energy and protein before calving. Proper energy levels boost general metabolic activities, which increases colostrum production. High-quality protein sources provide the amino acids required for immunoglobulins and other important colostrum components. Additionally, diets that meet or exceed caloric and protein requirements increase colostrum immunoglobulin concentrations.

Vitamins, minerals, and feed additives all play an essential role. For instance, Vitamin A is crucial for developing the immune system, Vitamin D aids in calcium absorption, and Vitamin E is an antioxidant that protects cells from damage. Selenium and zinc play critical roles in immunological function and directly impact colostrum quality. Vitamin E and selenium, for example, work synergistically to increase colostrum’s antioxidant qualities, boosting the calf’s immune system. Feed additives such as prebiotics, probiotics, and particular fatty acids may enhance colostrum quality by promoting cow gut health and enhancing beneficial components.

Investing in a thorough prepartum nutrition plan that balances calories, proteins, vital vitamins, minerals, and strategically placed feed additives may significantly increase colostrum output and quality. This improves newborn calves’ health and development, increasing production and efficiency on dairy farms.

Effective Management Strategies for Maximizing Colostrum Production in Dairy Cows 

Effective management tactics are critical for maximizing colostrum production in dairy cows. These tactics include maintaining a clean and comfortable prepartum environment, ensuring cows are not overcrowded, providing adequate ventilation, and ensuring cows are well-fed. Overcrowding, poor ventilation, and insufficient feeding may all negatively influence colostrum supply and quality. A quiet, clean, and well-ventilated atmosphere may significantly improve colostrum production.

Another important consideration is the duration of the dry spell. A dry interval of 40 to 60 days is suggested to give the mammary gland time to repair before lactation. Research shows cows with shorter or significantly extended dry spells produce less colostrum or inferior quality.

The time of colostrum extraction after calving is significant. Harvesting colostrum during the first two hours after calving offers the most nutritional and immunological value, giving the newborn calf the best possible start.

Additionally, giving oxytocin, a naturally occurring hormone may aid colostrum release. Oxytocin promotes milk ejection, which is advantageous for cows struggling with natural letdowns due to stress or other circumstances.

Implementing these measures can significantly enhance colostrum supply and quality, thereby improving the health and vitality of their newborn calves. This potential for improvement should inspire and motivate you as a dairy producer.

Ensuring the Quality and Integrity of Colostrum: Best Practices for Optimal Newborn Calf Health 

Ensuring the quality and integrity of colostrum is critical to newborn calf health. Use a Brix refractometer to determine the quality, aiming for 22% or above. Once the quality is confirmed, colostrum should be chilled to 39°F (4°C) before usage within 24 hours. For long-term storage, freeze at -0.4°F (-18°C) for up to a year. It’s essential to do so gently when thawing in warm water (no hotter than 113°F or 45 °C) to prevent protein denaturation. Avoid using microwaves for thawing.

Heat treatment kills germs while maintaining colostrum’s advantages. Pasteurize at 140°F (60°C) for 60 minutes to preserve immunoglobulins and growth factors. Freeze in tiny, flat containers or specialized bags to ensure equal freezing and thawing. To prevent protein denaturation, thaw gently in warm water (no hotter than 113°F or 45°C); avoid using microwaves.

Following these best practices ensures calves get the full advantages of high-quality colostrum, resulting in healthier, more robust animals and increased production and profitability in your dairy farm.

Bridging the Knowledge Gaps in Colostrum Production: The Path to Enhanced Dairy Farm Productivity 

Despite the existing knowledge gaps in colostrum production, your expertise as a dairy producer is invaluable. Your understanding of the factors influencing colostrum production, such as metabolizable energy, protein, and specific feed additives, is crucial. Controlled research is required to enhance further our understanding of how different dry periods and prepartum environmental variables impact colostrum. Your knowledge and experience are critical to bridging these gaps and improving dairy farm productivity.

Little research has been done on how stress and cow welfare affect colostrum. As dairy farms grow, balancing production and animal welfare is critical. The influence of seasonal fluctuations on colostrum output and composition requires more investigation to detect and counteract environmental stressors.

More studies are required to determine the ideal interval between calving, collecting colostrum, and using oxytocin. The effects of heat treatment and storage on colostral components must also be studied to standardize techniques and maintain colostrum quality.

Addressing these gaps will equip dairy farmers with data-driven techniques for increasing colostrum production and management, improving calf health and farm output. This attempt will need the integration of dairy science, animal nutrition, and stress physiology.

The Bottom Line

High-quality colostrum is critical for delivering crucial nutrients and immunity to newborn calves. This article investigates how parity, genetic characteristics, and metabolic health impact colostrum quality, considering seasonal and herd-level variables. A prepartum diet must be balanced with enough calories, protein, vitamins, and minerals. Effective management measures, such as prompt colostrum collection and adequate storage, retain its quality, resulting in healthier calves and higher herd output. Integrating these nutritional and management measures promotes calf health and development, providing a solid basis for future herd output. Continued research will improve dairy farming, ensuring every newborn calf has the best start possible.

Key Takeaways:

  • Individual Variability: Factors such as parity, the sex of the calf, and calf birth weight significantly influence colostrum yield and composition.
  • Metabolic Health: Indicators of the cow’s metabolic status are critical in determining the quality and quantity of colostrum produced.
  • Prepartum Nutrition: Adequate metabolizable energy, protein, vitamins, minerals, and specific feed additives during the prepartum period are essential for optimal colostrum production.
  • Management Strategies: Environmental conditions and the length of the dry period before calving play a pivotal role in colostrum production.
  • Harvest and Handling: The time from calving to colostrum harvest and methods of storage, including heat treatment, are vital for maintaining colostrum integrity and efficacy.
  • Research Gaps: There remain significant gaps in understanding how prepartum nutrition and management precisely affect colostrum production, indicating a need for further research.

Summary:

Dairy producers are crucial in providing newborn calfs with immunity and nourishment through high-quality colostrum. Factors like parity, calf gender, and birth weight significantly influence colostrum quantity and quality. Cows with better-developed mammary glands and overall health often produce higher-quality colostrum than first-calf heifers. Older cows may have lower colostrum quality due to metabolic load and health concerns. The sex of the calf also influences colostrum composition, with male calves producing more colostrum due to greater suckling power and frequency, while lighter calves may not produce as much, impairing their first immunological protection and development. Metabolic health is essential for colostrum quality and quantity, and effective management strategies are crucial for maximizing colostrum production in dairy cows.

Learn more:

How to Raise a Healthy Calf: Essential Tips for Reducing Mortality and Boosting Growth

Uncover crucial strategies for rearing healthy calves, minimizing mortality, and enhancing growth. Master the techniques for maximizing colostrum and milk feeding to nurture robust calves.

A good dairy herd depends on raised, healthy calves. Despite the challenges of early calf raising, success stories from German research on dairy farms, where a 17% calf loss rate was reduced through effective early rearing, inspire confidence in the potential for improvement.

High calf mortality and disease compromise attempts at herd health and animal welfare. Developing good, efficient dairy cows depends on prioritizing preweaning calf health. This path starts early in the weeks and months of a calf’s life.

The basis of a good dairy cow is a preweaning calf in good condition. From the value of the colostrum period to implementing aggressive milk-feeding programs, your role in rearing solid calves is crucial. Every stride you take is meant to reduce health hazards and boost development possibilities. Ready to discover more? Let’s examine the most excellent techniques for producing muscular, healthy calves.

The Lifesaving Liquid: Colostrum as the First Line of Defense

Early immunity of a calf depends on colostrum, which is the first milk produced by the mother after birth. It is high in immunoglobulins like IgG that guard against illnesses and lower death rates.

Using the “4 golden rules” of colostrum feeding:

  1. Feed colostrum six hours after delivery for best absorption of immunoglobulin.
  2. Three to four liters will help to guarantee enough immunoglobulins.
  3. Make sure colostrum has IgG levels of more than 50g/L.
  4. Maintaining a bacterial level of less than 100,000 cfu/mL helps to avoid illnesses.

High-quality colostrum powder, vitamins, and probiotics strengthen health and immunity by fortifying colostrum, promoting improved gut health and development.

Beyond Immunoglobulins: The Multidimensional Benefits of Colostrum 

Apart from the vital function of immunoglobulins in colostrum, additional elements greatly influence a calf’s early growth and health. Prebiotics, which are non-digestible food ingredients that promote the growth of beneficial microorganisms in the intestines, help good bacteria in the stomach flourish and create a healthy intestinal flora. By exposing antigens and triggering reactions, leucocytes—also known as white blood cells—offer passive immunity and protect against infections, helping the calf’s immune system mature.

Intestinal development, which refers to the growth and maturation of the intestines, depends critically on growth hormones like insulin-like growth factors (IGFs) and transforming growth factor-beta (TGF-β). They support the development of intestinal cells and help to create a robust intestinal barrier, therefore supporting gut lining repair and maintenance for adequate nutrient absorption.

Essential for its development and general well-being, these elements significantly increase the calf’s capacity to resist infections and maintain intestinal health. Rest assured, the unmatched relevance of colostrum in calf raising is highlighted by the combined impacts of oligosaccharides, leucocytes, and growth factors in colostrum, laying the basis for a good and robust existence.

From Economic Pressures to Nutritional Innovations: The Evolution of Calf Feeding Practices 

Historically, economic constraints affected calf nutrition practices, resulting in limited milk-feeding schedules meant to save costs. This approach often sacrificed development and health, requiring reducing milk or milk replacement to around 10% of the calf’s daily weight.

Modern techniques stress ad libitum feeding, a method that allows calves to eat as much as they want, up to 20% of their body weight daily. This approach enables daily weight increases of over one kilogram, fostering strong development and immune system functioning. Essential for this approach is giving enough energy and a balanced protein-to-energy ratio for best growth.

The change from limited to intensive feeding programs prioritizes dairy calves’ health, development, and long-term production, guaranteeing a good foundation for their future success as dairy cows.

The Modern Paradigm Shift: Balancing Energy and Protein in Calf Nutrition for Optimal Growth 

These days, calf nutrition emphasizes balancing protein needs with calories to support development and growth. Calves need a constant metabolizable energy intake for good weight increase, which is necessary for future dairy cow production.

The protein-to-calorie ratio is vital for lean tissue development. Protein helps organs and muscles grow and stops fat buildup. Current feeding plans, comprising almost 8 liters of milk or more than 1.2 kg of milk replacer powder daily, illustrate this complete approach. These strategies guarantee calves get the required nutrients for strong development, unlike limited feeding approaches.

High-quality milk protein is vital, especially considering the high skimmed milk content. Although other proteins, such as vegetables and whey, have been investigated, their effectiveness could be better. Vegetable proteins, like hydrolyzed wheat protein, show potential when combined with skimmed milk powder, providing more flexible feeding plans.

Feeding Intensity and Protein Quality: A New Era in Calf Nutrition 

The quality of protein in milk replacements becomes critical as feeding intensity rises. Milk-derived proteins- including those found in skimmed milk- are recommended for their exceptional digestibility and balanced amino acid composition, which match young calves’ dietary requirements. Early studies revealed that vegetable proteins, such as soy, caused digestive difficulties, resulting in inadequate development and health.

However, recent research has demonstrated improvements in vegetable protein compositions, increasing their viability by breaking down hydrolyzed proteins—like wheat protein—into smaller peptides, digestion and absorption increase. These proteins balance cost and nutrition to promote development and health on par with conventional milk proteins.

Revolutionizing Calf Rearing: The Comprehensive Impact of High-Quality Milk Feeding Protocols 

High-quality milk-feeding programs have transformed calf raising by improving growth rates, organ development, and immunological response. Early and sufficient food delivery from intense milk feeding significantly enhances calf health and vigor.

Accelerated growth rate—not just in weight but also in ideal body composition—including lean tissue and appropriate organ development—is a critical advantage of intense milk feeding. Studies on calves on extensive milk diets find that their gastrointestinal, cardiovascular, and musculoskeletal systems are more robust than those on limited diets.

Furthermore, regular milk intake helps the immunological response. Enough early nourishment helps the immune system mature and operate as it should. An enhanced milk diet reduces susceptibility to infections and illnesses and aids the growth of the intestinal epithelium and mucosal immune system. A well-fed intestinal immune system fights against diarrhea, a main cause of morbidity and death in newborn calves.

Moreover, vital milk intake guarantees the development of the intestinal lining and its immunological properties. Fortified milk formulae, often containing organic acids and probiotics, help maintain gut flora health. This builds resistance against diseases, in addition to helping to absorb nutrients and increase digestive efficiency.

Intense milk-feeding techniques provide a complete calf health strategy, encouraging faster development, improved organ formation, and excellent immunity. These methods show the need for early-life nutrition for long-term animal welfare and performance as they move from cost-minimizing to holistic health and productivity.

The Bottom Line

Starting an intense milk-feeding regimen from a newborn has several advantages. Stronger young animals result from better postnatal development promoted by it and from aid against health problems. Improved colostrum intake and enough milk replacer feeding improve intestinal growth and immunity, hence lowering diarrhea in neonatal and pre-weaning phases. Good early feeding management also increases lifetime performance in dairy cows, therefore stressing the need for contemporary dairy farming.

Key Takeaways:

  • The early calf rearing phase is critical, with mortality rates up to 17% within the first six months in some regions.
  • Colostrum feeding must follow the “4 golden rules”: quickness, quantity, quality, and cleanliness to ensure proper immunity transfer.
  • Feeding colostrum within six hours of birth and in adequate volumes (3-4 L) significantly reduces the risk of illness and mortality.
  • A shift from restrictive to ad libitum milk feeding can lead to better growth rates and higher daily weight gains in calves.
  • Modern feeding strategies focus on balancing energy and protein intake for optimal lean tissue growth and overall health.
  • The quality of milk replacers is essential, with an emphasis on high skimmed milk content and improved vegetable protein sources.
  • Intensive milk feeding programs support the development of the intestinal immune system and protect against neonatal diseases.
  • Proper early nutrition influences not only calf health but also the lifetime performance of dairy cows.

Summary: A successful dairy herd relies on healthy calves, and early rearing strategies can significantly reduce calf mortality and disease. Colostrum, the first milk produced by the mother after birth, plays a vital role in early immunity and gut health. The “4 golden rules” of colostrum feeding include feeding six hours after delivery, ensuring three to four liters of colostrum, maintaining IgG levels, and a bacterial level of less than 100,000 cfu/mL to avoid illnesses. Colostrum also contains beneficial microorganisms, such as prebiotics, which promote the growth of beneficial microorganisms in the intestines and create a healthy intestinal flora. Growth hormones like insulin-like growth factors and TGF-β support the development of intestinal cells and a robust intestinal barrier for adequate nutrient absorption. Modern calf nutrition practices have been influenced by economic constraints, leading to limited milk-feeding schedules. Fortified milk formulae, often containing organic acids and probiotics, help maintain gut flora health, build resistance against diseases, absorb nutrients, and increase digestive efficiency.

COLOSTRUM: Stop Making Costly Mistakes

It would be oversimplifying a very complex management situation, if you reduced calf management to feeding colostrum.  You must pay attention to a myriad of details. It all starts with the health and management of the mother and ripples out to include the environment, biosecurity, health and protocols of all the areas that touch on a calf before birth and after. Having said that, it is still valid to declare that colostrum remains the key to success with newborn calves. It is also where too many of us are falling short.

Not ALL Colostrum is Created EQUAL

Researcher Kim Morrill and a team of colleagues at Iowa State University conducted a study on colostrum quality. The team collected 827 samples of first-milking colostrum from 67 farms in 12 states between June and October 2010. The parity of donor cows was recorded, as was the storage method of the colostrum when it was sampled — either fresh, refrigerated or frozen.  The findings were reported in the July 2012 edition of the Journal of Dairy Science. What the team found is rather revealing. Only 39.4 percent of the samples met industry standards for both immunoglobulin (IgG) concentration and a bacteria measure known as total plate count (TPC).

Survival of calves with inadequate serum immunoglobulin concentrations is reduced, compared with calves having acceptable levels of immunity. Source: National Dairy Heifer Evaluation Project, NAHMS, 1992.

Therefore, slightly more than 60 percent of colostrum on dairy farms is inadequate, putting a large number of calves at risk of failure of passive transfer and/or bacterial infections.

If judged only on the basis of IgG, without looking at TPC, a sizeable number of the samples still fail to pass muster. Almost 30 percent of the samples had IgG concentrations that fell below the industry standard, which is defined as having more than 50 milligrams of IgG per milliliter.

Nearly 43 percent of the samples had total plate count or TPC that failed the industry standard, which is defined as having less than 100,000 colony-forming units per milliliter.

Colostrum Effectiveness: Goes Down Fast

08-001f1[1]The ability of the calf to absorb colostrum decreases with time. By 9 hours after birth the calf can only absorb half of the colostrum. By 24 hours the amount absorbed is minimal.

  • Feed the colostrum as soon as possible after birth
  • Feed calves one gallon of colostrum (100 pound calf). Minimum for Holsteins is 3 quarts.
  • Eight to twelve hours later feed another two quarts
  • Try to get the calf to suck the colostrum, whatever they do not suck will need to be tubed.

What about ARTIFICIAL Colostrum?

The most common methods used for evaluating colostrum quality are with a colostrometer, a refractometer or by visual appearance. The calf needs to continue to receive colostrum the first two days, if not from its mother then from another cow that has recently given birth. Manufactured colostrum replacers are also available.  Sometimes these arrive frozen. Because the antibodies in the colostrum are crucial to helping the calf build its disease resistance, thawing should be achieved slowly and carefully to avoid destroying the antibodies.

Quantity: This area needs improvement.

“A lot of dairy producers are giving only about 2 quarts of milk per calf per day. They’re doing a pretty good job of getting it to the calf early, but they’re not giving them a great enough quantity of milk. They need a gallon a day and more in cold weather.” Surveys show that 45.8 percent of operations hand-fed more than 2 quarts but less than 4 quarts of colostrum during the calves’ first 24 hours of life. there’s a lot of data on the role colostrum plays in growth, says Jim Drackley, dairy scientist at the University of Illinois and another of the roundtable participants.“The initial development of the intestinal tract in the first couple days of life is very much dependent on colostrum intake. We know that the basics include getting enough colostrum into the calf as quickly as possible, and that the colostrum should be of good quality in terms of its antibody concentration.

KEEP IT CLEAN: Unsanitary Colostrum

There is too much bacteria in much of the colostrum that is collected and fed on dairy farms. This could be the source of an early infection or give the calf problems in absorption.  But even people who feed adequate amounts can still have problems if the colostrum is unsanitary, points out Simon Timmermans, veterinarian from Sibley, Iowa. “We’ve started a HACCP protocol where we collect a random colostrum sample weekly before it goes into the calf,” Timmermans says. “We can detect if there is a hygiene problem based on the bacterial count. I think that’s the key reason why we see such better performance out of the beef industry. It’s the human element, and it goes to hygiene.”

Every Delay.  Every Bucket Change.  Multiplies Contamination

Timmermans explains that colostrum is a great culture media for iron-loving bacteria like Salmonella. “The producer may do everything perfectly, collecting that one gallon of colostrum, but then he lets it sit out in a bucket for three hours before he gets it fed to the calf” and bacterial levels explode.

What We All Know.  What we DON`T Always Do!

Cows have stronger, higher quality colostrum compared to heifers. It is important to feed one gallon of colostrum to Holsteins to make up for the differences in strength. (The stronger the colostrum, the more antibodies that it contains.)  A colostrometer can be used to determine the quality of colostrum. This will detect the poor quality of colostrum which should not be used.

Save Calf Lives, Sanitize

Dam’s udders should be cleaned and prepped with pre-dip before colostrum is harvested. Extra colostrum can be stored in the refrigerator for up to 7 days. Be sure to date the colostrum so that freshness can be ensured. Colostrum can be frozen for up to one year. Colostrum should be thawed out by placing the container in warm water. Microwaving colostrum will destroy the valuable antibodies present.

The Bullvine Bottom Line

Producers do a pretty good job of getting colostrum to the calf early.  Colostrum is the key to success, but you have to have the right combination of timing, quality and quantity.

 

Get original “Bullvine” content sent straight to your email inbox for free.

 

Send this to a friend