Payday Loans Payday Loans

Archive for dairy cattle breeding

No matter what industry you look at there are always going to be those people who are immoral, shiftless, self-gratifying and good-for-nothing.  Throughout the Middle Ages, the Catholic Church hierarchy emphasized teaching all lay people the Deadly Sins.  We here at the Bullvine decided to take a look at the Seven Deadly Sins in the context of the dairy breeding industry.  The following is what we found:


Who hasn’t lusted for money, food, fame, power or sex? Come on. We are not monks.  So we are all guilty of this at some point or another.  In the dairy breeding industry there are those who lust for money, fame and power.  Lust for these three desires has led many dairy breeders to their downfall.  Instead of just making their breeding and farm decisions based on sound judgment, they let the desire for money, fame or power influence them and, in the end, make investments or decisions that make no rational sense.  Funny that the animal associated with lust is the dairy cow.


Gluttony is an inordinate desire to consume more than that which one requires. This is often interpreted as selfishness. Essentially it is placing concern with one’s own interests above the well-being or interests of others.  This is one area that I can say very confidently that most members of the dairy community are actually not as guilty of.  (Read more:  Why the Dairy Community is the Greatest in the World….).  However, there are those that have a tendency to overindulge in show ring results.  While I am as big a fan as anyone of the tanbark trail, I often have to remind myself that it is just a passion and remember where it fits relative to the rest of the dairy industry.


Greed is the desire for material wealth or gain, ignoring the realm of the spiritual. It is, like lust and gluttony, a sin of excess. However, greed (as seen by the church) is applied to a very excessive or rapacious desire and pursuit of material possessions.   “Greed is a sin directly against one’s neighbor, since one man cannot over-abound in external riches, without another man lacking them.”  Lately, I see the dairy breeding industry getting “greedy” with their genetics.  Empire building A.I. companies are not sharing their early release semen, and breeders are now not willing to sell embryos from their top females.  Greed has undoubtedly infected the dairy breeding industry.


Sloth is the avoidance of physical or spiritual work.  It certainly would be really hard to accuse most dairy farmers of avoiding physical work. However, there are definitely some areas where sloth is starting to creep in.  No, I am not talking about the skyrocketing number of breeders who are switching to robotic milking systems. These breeders are changing the type of work they are doing as opposed to the amount of work they do.  What I am talking about here are the breeders who are looking to take the easy way out.  On the tanbark trail, it is the breeders who expect to win at the big shows, but don’t realize how much work it takes and fail to do the work 365 days a year that it takes to achieve success.  For the average dairy breeder, I notice sloth tendencies when they make their breeding decisions.  Instead of taking the time to carefully do effective research on the best mate for their cows (Programs like GPS) they look for a quick and easy answer for their breeding programs. (Read more: gPs– Genetic Profile Systems – Dairy Cattle Breeding Made Simple).  Another example of sloth in the dairy breeding industry, is livestock photography.  Many professional photographers have gotten lazy and have let their ethics slide to a point where it is now downright sinful.  (Read more: Dairy Marketing Code of Conduct)


Wrath, also known as “rage,” may be described as inordinate and uncontrolled feelings of hatred and anger.  Feelings of anger can manifest in different ways including impatience, revenge, and self-destructive behavior. In the dairy breeding industry, I notice this vice in many breeders choice of which A.I. unit to purchase their semen from.   Instead of purchasing semen from the A.I. company that has the best sire for their animal, some breeders let their anger for a certain organization cloud their judgment and lead to diminished returns in their breeding program.  There are also those who have turned their wrath on us here at the Bullvine (Read more: The Bullvine: Wanted Dead or Alive and  Why I Don’t Care If You Like Me)


Envy is the desire for others’ traits, status, abilities, or situation. There are many (yes I say many) dairy breeders that are guilty of this.  From those whose envy is relatively mild, such as case of envy over ownership of a certain animal, or breeding success to those that turn almost green with envy over the success of their fellow breeders.


In almost every list, pride is considered the original and most serious of the seven deadly sins and the source of the others. It is identified as believing that one is fundamentally better than others, failing to acknowledge the accomplishments of others and excessive admiration of the personal self.  In the dairy breeding industry, I notice this in many old school breeders who fail to recognize new tools such as genomics.  They believe that their “breeding strategy” is far superior to that of others and let pride get in the way of achieving even greater success.

The Bullvine Bottom Line

Remember – no one is perfect. Sin, like death, is an unassailable fact of life. It is also one of the last great taboos for public debate. We here at the Bullvine feel that it is possible and necessary to talk about sin in ways that enrich our industry, as well as our personal lives.     These sins have been the downfall of some. However, others find success through overcoming them. It is important to recognize the vices you’re susceptible to and to manage them. Otherwise, these seven deadly sins will be the downfall of your dairy breeding program.




Get original “Bullvine” content sent straight to your email inbox for free.





Two months ago I had one of those conversations. A friend said to me “you know Murray I am moving on from just simple genomics”. That perked my ears up and I listened more intently. “Yep I am now thinking about epigenomics”, he said. Well that was enough to set me off investigating what is out there that is beyond what our industry is currently considering and using when it comes to genomic.  Relax a little, this may seem like rocket science today, but it is in tune with what our industry has always done in the past.  We look to find more accurate ways of indentifying the elite animals. Then we figure out how knowing that information gives us ways to make dairy breeders and dairy farming more profitable.

Already Many Steps Too Far?

So now ‘epigenomics’ was pinned to my clipboard. But I didn’t get any further before I had a Master Breeder husband and wife corner me for half an hour and ‘inform’ me that “The Bullvine was leading the industry astray”. They stated to me that “they were from Missouri” and perhaps we should “still only be using the actually officially authenticated information – DHIR records and breed classification results – when it comes to selecting bulls and marketing females.  They asked how can we know that the hair pulled and submitted for DNA testing actually came from said animal.” I have known this couple for almost forty years so I took the discussion on to a review great cows of the past and how they would not compare to the great show and brood cows of today. As we started to conclude our conversation the lady, who had been somewhat quiet during our sharing, commented “You (Murray) have a good point about how the genetic evaluation results over our lifetimes have resulted in the fact that we have far superior cows for both conformation and production, but our herd’s current biggest genetic problem is cows not getting back in calf. We just do not now get to have very many ten year old and older cows in our herd, liked we used to.” That gave me the opportunity to talk to them about genomics and having fairly reliable information, early in an animal’s life, on its genetic merit for reproductive traits.

The husband’s concluding comment warmed my heart. “Our grandson plans to come home to our family farm and he tells us that at university his professors are saying the information we have today on genomics is just the start. So don’t give up on us old guys. You folks at The Bullvine just keep giving us the facts and helping the industry do an even better job of breeding dairy cattle. We don’t own a computer but our family keep us quite up-to-date on what The Bullvine is writing about.”  Obviously this couple are not as set in their ways as they led me to understand at the start of the conversation.

So if we have just scratched the surface, let’s delve a little deeper.

Epigenomics – What’s That?

By definition, epigenomics is the study of modification of the expression of the genetic material in a cell. Sounds rather out of the norm. Something can alter what the DNA says is the genetic merit of an animal? Let’s think that through a bit more.

As cattle breeders we can all think of times when three full sisters all had very similar performance. And I expect many of us can also remember situations where two of the sisters were very similar but the third sister just did not measure up to the other two.  The question that breeders always ask is did the third one not get the good genes, or did she get the good genes but something inhibited her from being able to express them.  I have even heard very knowledgeable breeders say that the third one will breed just a good as the other two.  How they arrived at that conclusion I am not really certain. But I have seen it happen as they predicted.

Research in mice has shown that the diet of a sire can influence the gene expression of their progeny. So that fits under the definition of epigenomics. Dr. Jacques Chesnais of Semex feels that “there is a definite possibility that epigenomics plays as important role in adaption to the environment. In particular, in our industry, the way we feed and treat a cow in the early stage of pregnancy could affect the calf for a lifetime and therefore affect the future productivity of the herd.” Hearing that made me wonder if the recipient dams of ET calves may have an influence on how those calves pass on their genetics.

Leaders in the study of epigenomics in livestock Dr Marc-Andre Sirard and Dr Claude Robert, Laval University, are currently  investigating how epigenomics applies to the bovine and in particular to female reproduction and embryo development. It will be interesting to follow their reports.

There is obviously much to be studied and learned about epigenomics in the bovine. Definitely traits like reproduction, health and immunity are ones that dairy breeders wish to know more about as they relates to inheritance.

So then – What is Nutrigenomics?

The second new kid-on-the-block, so to speak, is nutrigenomics. The study of the effects of foods and food constituents on gene expression. By definition “Nutrigenomics can be described as the influence of genetic variation on nutrition, by correlating gene expression or SNPs with a nutrient’s absorption, metabolism, elimination or biological effects.” Think about it. If we know the genetic make-up of our dairy cows we would be able to design their diets accordingly. Are there cows out there that can make better use of lower quality forages? Wouldn’t that be a boon for the economics of dairy farming. Especially given that feed costs are 52-58% of total dairy enterprise costs and low quality forages are less costly.

I asked two nutritional consultants about this. I got two very different responses. The first one said – “don’t bring that on too quickly I still have another ten to fifteen years in my working career”. The other consultant said “Well it would change my job but if it means dairy farming can be profitable and sustainable and if we can feed the hungry world – well bring it on”.

Expect Genetics to Play an Even Bigger Role in the Future

Investigation by Canadian Dairy Network (CDN) has predicted that, in stable milk pricing times and on milk production focused farms, half of the increased on-farm profits comes from increasing the genetic merit of sires and cows used to produce the next generation of females.  With a better understanding and more definitive knowledge of epigenomics and nutrigenomics it could possibly be that 60+% of on-farm profits could be as a result of the genetics used.

From the DNA analysis using hair follicles, breeders now know with 50-70% accuracy the genetic merit of their animals for a host of important traits. Think what might be possible if by including epigenomics and nutrigenomics information. The accuracy levels could rise to 70-80%.

The Bullvine Bottom Line

The research phase of studying how epigenomics and nutrigenomics relate to the dairy cow is well underway. We can expect refinements to our genetic evaluation procedures based on what the research tells us.  And in time breeders will have information so they can better breed, feed and manage their herds. Stay tuned to the Bullvine for more great insight into these two future changing technologies.

The Dairy Breeders No BS Guide to Genomics


Not sure what all this hype about genomics is all about?

Want to learn what it is and what it means to your breeding program?

Download this free guide.





The Art of Livestock Breeding: It starts with a need

The breeding of domesticated livestock has long been considered to be an art practiced by food producers of the world. It is has definitely not been static. It started with observant farmers seeing an opportunity to improve the attributes of their stock. Initially this meant fixing the characteristics of their stock and establishing breeds. Breed purity was the primary focus which often meant coat colour in cattle or ability to pull heavy loads in horses; reproduction rates in pigs’, egg production volume in chickens; ability to find their way home in carrier pigeons and so on as the need or goal was established.

Dairy Cattle Breeding: The cream rises to the top

Over the centuries species and breeds have evolved. In cattle it meant animals that were developed for draught, meat and milk production. Milk has achieved special designation and has been recognized as nature’s most perfect food. Over time, there have been hundreds of attempts at developing breeds of cattle for their milk producing ability. That progressed to the point where there were only a few. Today Holstein and Jersey are the major survivors. These breeds were developed in temperate regions of Europe each with their own characteristics.

Advancement of North American Breeding: No decade stands still

Over the twentieth century dairy farmers in North America have molded their dairy cattle into what they are today by taking many steps. A brief and not all inclusive synopsis of some of those changes by decade are:

Early 1900’s Milk recording groups formed to authenticate volumes and milk quality
1920’s Type Classification programs started
1930’s With electricity came the start of machine milking, larger herds and the need for teats to point to ground and be close together
1940’s Artificial insemination, the painting of breed True Type pictures and the need for milk not to carry diseases humans could contact
1950’s Mechanization of field work resulted in farms specialization, improved forage quality, off farm processing of milk and sire daughter raw averages
1960’s Sire proving coops were formed, milk recording started to be used for more than just animal authentication purposes and farmer marketing coops were established
1970’s Greatly expanded numbers of young sires being sampled, BLUP analysis technique and genetic indexes for both bulls and cows
1980’s Significant changes in genetic indexing methodologies, breeds and breeding companies with specified breeding strategies, the practise of on-farm preventive medicine programs by veterinary practices and amalgamation of farmer coops for recording, breeding and milk marketing
1990’s Dairy cattle breeding adopted more finely tuned breeding formula’s (TPI, LPI and Net Merit), total mixed rations, on-farm least cost feeding, increased on-farm management practises including computer software programs, data analysis to better predict genetic merit, and in Canada governments , due to budgetary constraints removed themselves from the provision of milk recording and genetic indexing services
2000’s Greatly enhanced rates of genetic advancement, capture of data for auxiliary and functional traits, refinements in breeding strategies to consider more than milk and conformation, routine use computerized farm management for both production and economics, greatly expanded herd sizes,management took on greater importance on all farms and researchers started to consider if the DNA make-up of an animal could be used for genetic advancement

Finding a New Path: Adding Genomics

Very definitely the move about five years ago by a few AI companies and the USDA to compare the DNA snips results with the genetic evaluations for dairy bulls proven in the USA and Canada was significant. However the decision not only to study but to make the results openly available to breeders was a gigantic step. Breeders could know the genomic results for bulls and cows. This meant that breeders were central to the genetic future of their animals and their industry. Compare that to the swine and poultry industries where relatively few breeding companies own the genetics of the world. Now in 2012 all dairy cattle breeding regions of the world are using, or are about to use, genomics to evaluate their animals’ genetic composition.

The Bullvine Bottom Line

I have always noticed that people who make a difference are the ones who, not only don’t resist change, but welcome it. It is important that producers through their breed societies and breeding coops continue to have open minds and collectively research and develop the genetics of their dairy cattle. If breeders are to govern their destinies, they need to make sure that their elected and organization officials are objective and dynamic in how they approach changes to cattle breeding such as genomics. Many changes are yet to be thought of. We always need to remember that, “When you are through changing, you are through.”


In the race to have the next great sire, there comes a point where you have to ask have we taken it too far.  Analysis performed by Holstein International of the 33 popular genomics bulls of 2009 showed that only one has managed to maintain his breeding value: O-Style.  Even with those facts, why are so many A.I. companies now basing 70%, 80%, and 100% of their genetic programs on genomic sires?

Partly due to the “shortage” of new daughter proven sires of sons, and partly due to the increased confidence in genomics since it started in 2009 the percentage of breeding programs that are using genomic sires has increased from 40% to 50% on a global basis.  Moreover, just like a great outlier sire, the difference between the AI’s is substantial.  With Accelerated Genetics, Genex-CRI and Alta Genetics all sampling over 90% genomics sires.

So why are these studs putting so much weight in genomics?  Do they know something the rest of us don’t?  Have they just gone cuckoo?

In reality is actual goes back to the genetic advancement formula that has been around for many years.

Let’s take a close look at each piece of this equation and the effect genomics has.


The effect that genomics has on accuracy is very significant.  According to CDN the average gain in accuracy in LPI due to Genomics is as follows:

Sub-Group for Holstein Breed

Average LPI Reliability (%)




Direct Genomic Value (DGV) Weight

50K Young Bulls and Heifers
(Born 2008-2011)





3K Heifers
(Born 2008-2011)





Younger Cows in 1st or 2nd Lactation





Foreign Cows with MACE in Canada





1st Crop Proven Sires in Canada





Foreign Sires with MACE in Canada





Selection Intensity

In the past AI companies would have sample multiple sires from the same cross, and try multiple crosses to find out which one was the genetically gifted.  That does not even take into account the need to sample from a larger portion of the top females to discover which ones where genetically gifted and which ones where “artificial” in their breeding values.  With genomics, they can pre-screen these sires and crosses to see which ones will have the highest chance of producing the next top-selling sire and which ones did not get the best their parents had to offer.

By eliminating the need to sample such a large number of sires, allows the AI companies to focus on a more intense core group of sires, and push the limits on genetics advancement

Genetic Variability

This is one area than many breeders do not pay enough attention to.  Certain traits, such as Milk Yield, Protein Yield, and stature are much more heritable than others (i.e. Rump and Feet & Legs).  What this means is, if you spent all your time breeding for feet and legs, you will see less overall genetic gain than say focusing on production traits.  That is why production sires will typically offer the greatest genetic gain, since most type traits have a much lower heritability.  It’s also why breeders always need to be conscious of production when building your breeding program and don’t mate for low heritability traits.

The following is Holstein heritability estimates used for genetic evaluations in Canada

  • Production Traits
    • Milk Yield 43%
    • Fat Yield  34%
    • Protein Yield 40%
    • Fat Percentage 50%
    • Protein Percentage  50%
  • Functional Traits
    • Somatic Cell Score  27%
    • Lactation Persistency 40%
    • Herd Life  10%
    • Calving Ability 6%
    • Daughter Calving Ability 6%
    • Milking Speed  21%
    • Milking Temperament 13%
    • Daughter Fertility 7%
  • Major Type Traits
    • Conformation 26%
    • Rump 15%
    • Mammary System 25%
    • Dairy Strength 36%


In order to cut down the genetic intervals many AI companies are now using genomic sires themselves as sires of sons.  This means that there are sires of sons that don’t have any daughter information yet.  The company taking this to the extreme is Alta Genetics.  Their breeding program is made up by no less than 70% of genomic bulls that are sired by genomic bulls.  The greater you can cut down the interval from the birth of the parent to the birth of the progeny the greater the average genetic gain per year.Yes, you will run the risk of sires that drop, but overall on a large breeding program you will come out ahead.

The Bullvine Bottom Line

Many AI companies, especially in North America, are pushing the edge with genomics to maximize annual genetic gain.  While they will run the risk of a sire not turning out, or dropping significantly from his pre-proven prediction, when you look at the net result over the generations of their whole breeding program they will come out way ahead.  By leveraging the effect Genomics has on accuracy, selection intensity, focusing on highly heritable traits, and making the interval between generations as low as possible, these studs stand the greatest chance of consistently producing the best genetics available.
The Dairy Breeders No BS Guide to Genomics


Not sure what all this hype about genomics is all about?

Want to learn what it is and what it means to your breeding program?

Download this free guide.


Send this to friend